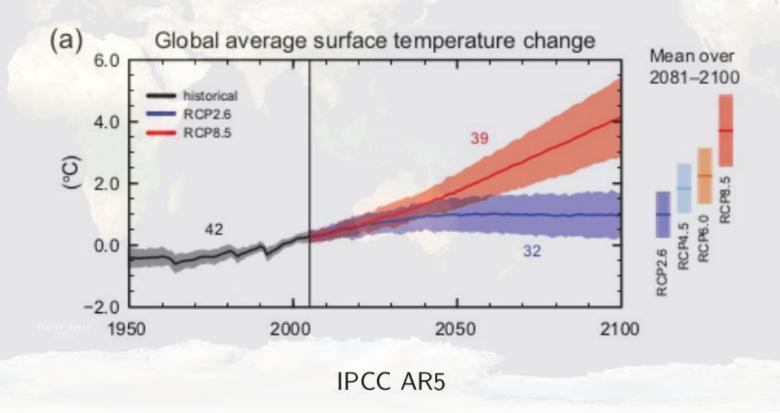
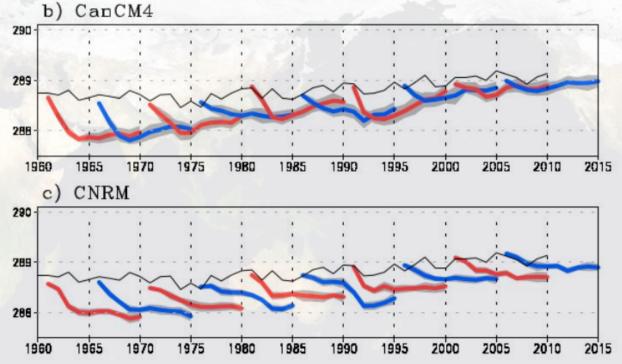
Machine Learning as a tool for Climate Predictability Studies

Balu Nadiga, LANL (balu@lanl.gov)
HiLAT-RASM

Models Good at Realizing External-Forcing Related Predictability



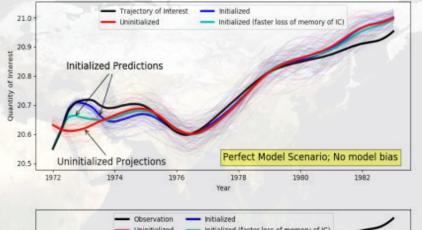
..., but Models are Bad at Predictions of Natural Variability

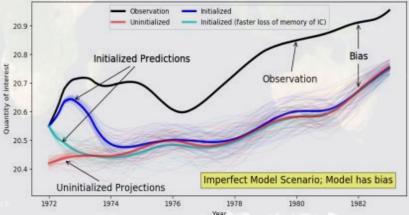


(From Kim et al., 2012)

Initialized Predictions of Various Qols in Various Models (Surface Temperature in CanCM4 and CNRM) Display a Jump Behavior

Difficulty with Predicting Natural Variability: Model Bias





- Predictability studies are conducted in perfect model settings
- However all climate models are imperfect (have biases)
 - Extremely difficult to model the exact balance (small residual) of myriad (large) processes that lead to the mean state of the climate system and modes of variability
 - Small difference between large numbers

Nadiga et al. "Enhancing skill of initialized decadal predictions using a dynamic model of drift." Geophysical Research Letters 46.16 (2019)

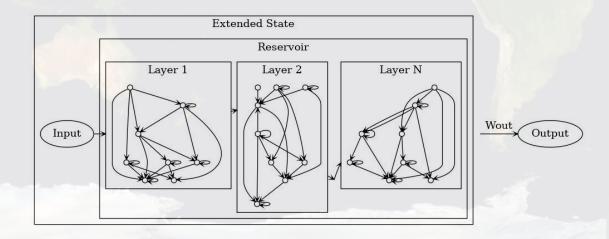
Reduced Order Dynamical Systems and Predictability

- Model order reduction is a necessity to study predictability
 - The actual climate system or its surrogates—comprehensive climate models—are too complicated
 - Interactions span many orders of magnitude
 - Direct studies are too resource intensive, both computationally and otherwise
- ► The Linear Inverse Modeling (LIM) approach
 - Captures a few essential interactions between dynamical components of the full system
 - Has provided valuable insights into behavior of full system
 - Has been suggested that it captures the bulk if not all of the predictable response in certain systems
 - Has basis in fluctuation-dissipation theorem of statistical mechanics
 - Arises in the context of spectral analysis of the Koopman operator (cf. Dynamic Mode Decomposition)

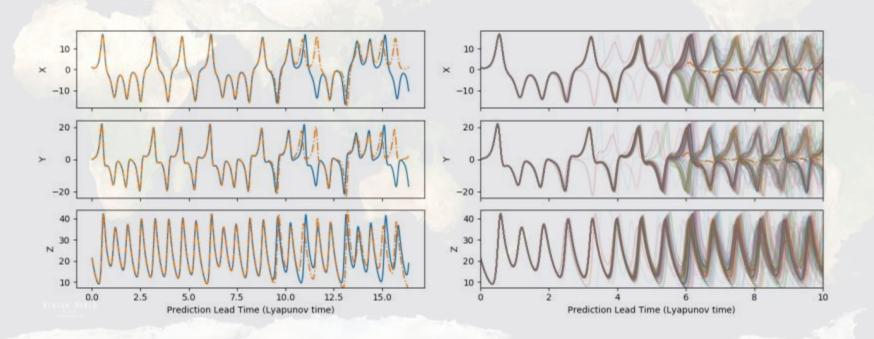
Methods and Architectures

- Classical Statistical Methods (e.g., Linear Inverse Modeling)
- Advanced Statistical Mechanical Methods (e.g., Mori-Zwanzig formalism for memory)
- ▶ Deep Learning: MLP, LSTM, PCA-LSTM, convLSTM, Attention, Transformer, Reservoir Computing, etc.

Reservoir Computing II RNN weights are constant; only output layer is trained using linear regression Extended State RNN/Reservoir Q Output Output



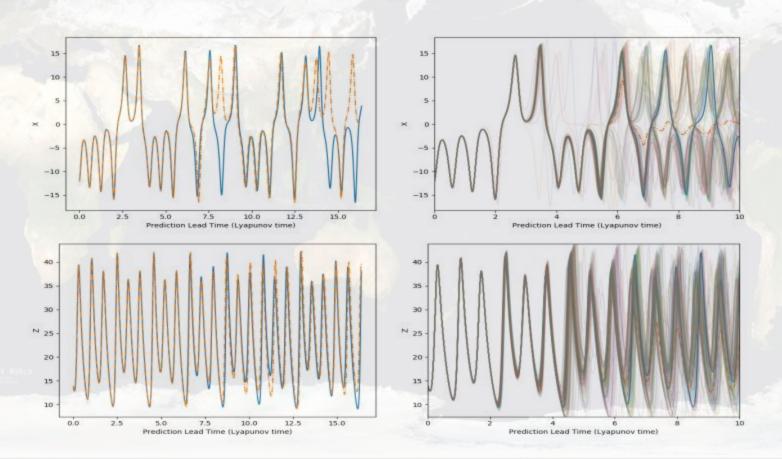
When system is fully observed, RC learns the L63 attractor and predicts for insane lengths of time



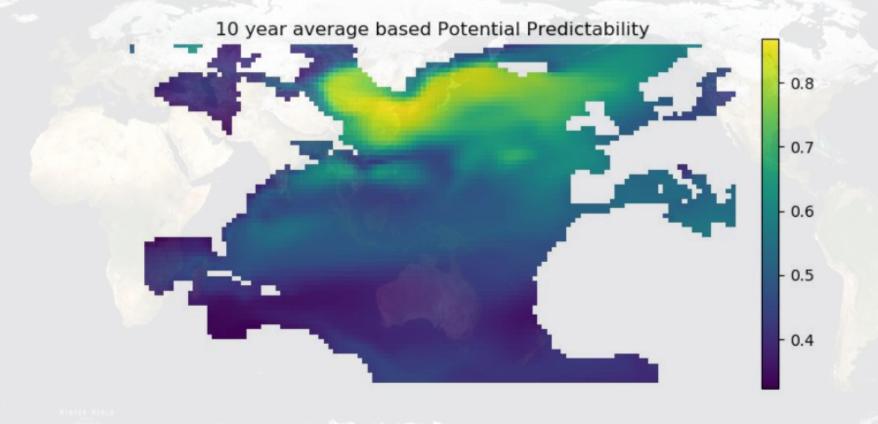
Left: A single prediction. Right: All ensemble members

With partial obs. predictions good for much shorter periods

Top: Learning with X only (Y only is similar). Bottom: Learning with Z only

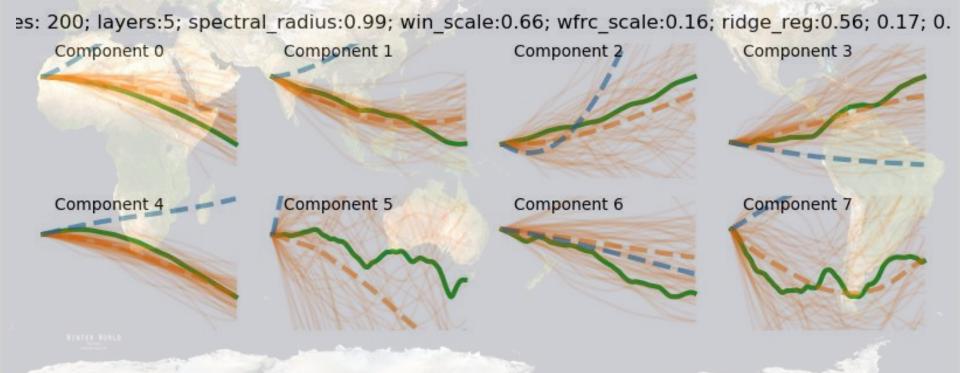


Prediction of SST in the North Atlantic



Potential Predictability as the ratio of variances of N-year average and 1-year average of SST

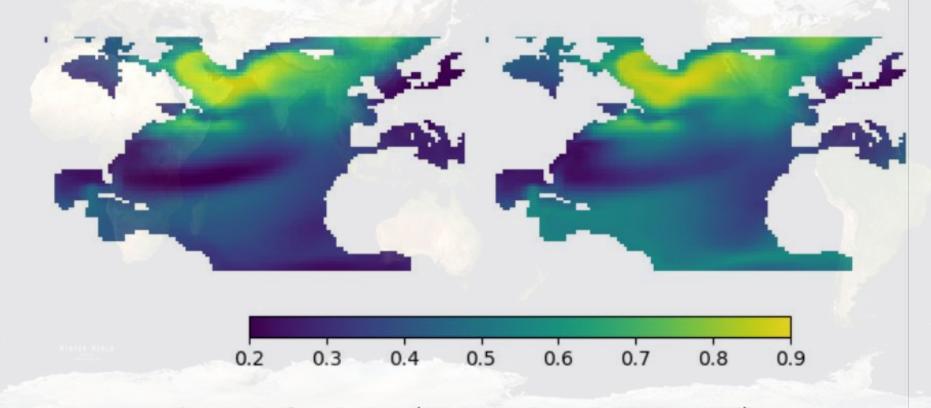
Predicting Evolution of Internal Variability



Green: Truth; Dashed Blue: Linear Inverse Modeling; Dashed Orange: ensemble-mean of ML-based model Thin Orange: individual members of ML-based ensemble

Reservoir Computing vs. Linear Inverse Modeling

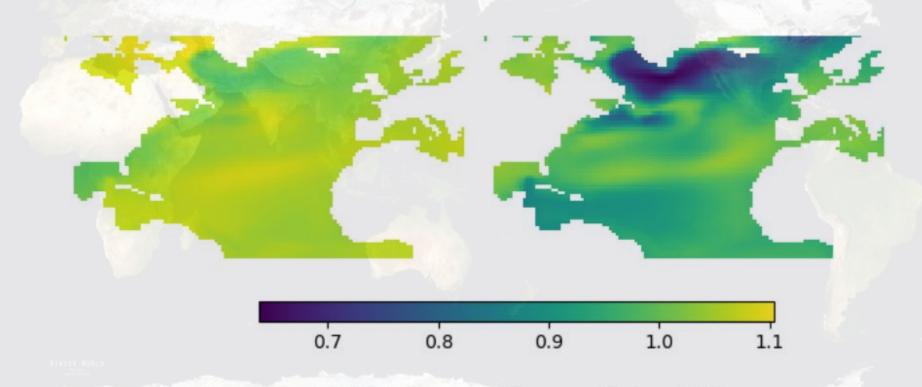
Learning from Long Runs of Data. 800 years split 80:20



Anomaly Correlation (Higher values ⇒ Higher skill)

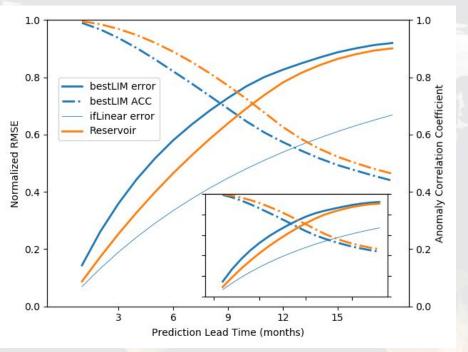
Reservoir Computing vs. Linear Inverse Modeling

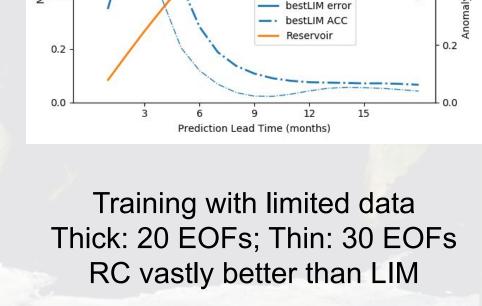
Learning from Limited Data. 13 year segments split as 88:12



Normalized RMSE (Lower values ⇒ Higher skill)

RC Vastly OutPerforms LIM





0.8

1.0

0.8

0.6

Normalized RMSE

Training with lots of data
Main: 20 EOFs; Inset: 30 EOFs
RC slightly better than LIM

Summary and Future Work

- Currently LIMs are the main reduced order dynamics workhorse for predictability studies
- ▶ What do data driven methods have to offer in this setting?
- Reservoir Computing based prediction system developed for an Earth System Model (Think weighted sum and nonlinearity)
- RC vastly outperforms LIM
- ► The system and the predictions need to be analyzed to identify predictable patterns and establish predictability
- ► Application to observations and CMIP
- Predictability studies conducted in perfect model settings suggest that predictability extends to the decadal timescale
- In reality, however predictive skill vanishes much much faster.

 How much can we expect ML to improve skill?